Algebra CCSS Lesson Plans
Teacher: Angela Estrada
Week: April 1-5, 2024

DATE	OBJECTIVES	BELL RINGER	ANTICIPATORY SET	PROCEDURES	ASSESSMENT	CLOSURE
MONDAY				Holiday		
TUESDAY	The student will be able to: 1. Recognize situations in which one quantity grows or decays by a constant percent rate per unit interval relative to another. (F.LE.1.c) 2. Interpret complicated expressions by viewing one or more of their parts as a single entity. (A.SSE.1. b) 3. Create equations and inequalities in one variable and use them to solve problems. A.CED. 1 4. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A.SSE. 3 5. Interpret the parameters in a linear or exponential function in terms of a context. F.LE. 5	MAAP Practice Skills	Recap of Exponential Growth (including Compound Interest) and Exponential Decay	Exponential Applications Practice- 1. *Create a table of values, determine the initial start, use the growth, or decay factor, and find its y intercept. 2. Solve Exponential Word Applications Groups or TablesSolve and present findings to classmates.	Groups or Pair Share Teacher Observation Student Feedback and Written Responses Online Desmos Graphing Calculator Skills Portfolio Points	Enrichment: Blooket Online Game- Exponential Functions

	Essential Question: Can I analyze and solve exponential applications?					
WEDNESDAY	The student will be able to: 1. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table.) F.LE. 2 2. Create equations and inequalities in one variable and use them to solve problems. A.CED. 1 3. Interpret the parameters in a linear or exponential function in terms of a context. F.LE. 5 4. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. A.SSE. 3 Essential Question: Can I create arithmetic and geometric sequences using explicit and recursive formulas?	Pi and the Fibonacci SequencePBS Learning Media Recap of Arithmetic Sequencing Patterns: Given the beginning term of a sequence and three subsequent numbers, find the arithmetic sequences (common differences) and extend the patterns.	Explore Sequencing Patterns: Given the beginning term of a sequence and subsequent numbers, determine the geometric sequences.	1. Determine whether geometric sequences occur. If so, what are the common ratios? 2. Find subsequent terms of geometric sequences. 3. Using the geometric sequence formula, create the rule for the $\mathrm{n}^{\text {th }}$ term. 4. Applications with Sequences 5. Write recursive formulas.	Pair Share or Trios Teacher Observation Student Feedback and Written Responses; Portfolio Points Online Desmos Graphing Calculator Skills	Share findings with classmates.

THURSDAY	The student will be able to: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* F-IF. 4 Essential Question: Can I interpret end behaviors, zeros, increasing and decreasing intervals, and even or odd functions?	MAAP Practice Skills	Vocabulary for Interpreting Data	Day 1- End Behaviors, Zeros, Increasing and Decreasing Intervals, and Even or Odd Functions Patterns for Odd or Even Functions Partner or Group Time	Pair Share or Trios Teacher Observation Student Feedback and Written Responses; Portfolio Points Online Desmos Graphing Calculator Skills	Analyze classmate responses.
FRIDAY	The student will be able to: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts;	MAAP Practice Skills	Student Led Recap of Interpreting Key Features of Graphs	Day 2- End Behaviors, Zeros, Increasing and Decreasing Intervals, and Even or Odd Functions Whiteboarding- Small Groups or Partners	Pair Share or Trios Teacher Observation Student Feedback and Written Responses;	Tutoring Schedule Reminder: - Monday afternoon until 4:30 - Daily at 8:00 a.m.

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & \begin{array}{l}\text { intervals where the function } \\ \text { is increasing, decreasing, } \\ \text { positive, or negative; relative } \\ \text { maximums and minimums; } \\ \text { symmetries; end behavior; } \\ \text { and periodicity.* F-IF.4 } \\ \text { Essential Question: Can I } \\ \text { interpret end behaviors, } \\ \text { zeros, increasing and } \\ \text { decreasing intervals, and } \\ \text { even or odd functions? }\end{array} & & & \begin{array}{l}\text { Portfolio Points } \\ \text { (}\end{array} & \end{array} \quad \begin{array}{l}\text { Online Desmos } \\ \text { Graphing } \\ \text { Calculator Skills }\end{array}\right]$

